Hospitals and other medical facilities depend on the reliability of their HVAC systems to follow procedures and properly care for their patients. These facilities can provide difficulties for engineers, as many have had numerous upgrades and expansions. Systecon can eliminate those difficulties, designing a system to integrate all previous systems and allowing the most efficient system to be put into operation.

For new construction, a Systecon modular central plant can provide all utilities for a hospital including electricity, steam, hot water and chilled water through cogeneration. Medical gas, compressed air, and other hospital specific utilities can be included.

Proven Success

Modular Central Plant - Chiller Plant

Chilled Water System Data
- Chiller Plant Chilled Water Flow: 1,875 GPM (Future: 3,750 GPM)
- Chiller Plant Capacity: 1,250 Tons (Future: 2,500 Tons)
- Fluid: Water
- Suction Pressure: 50 PSIG
- System Design Pressure: 125 PSIG

Cooling Tower Water System Data
- Chiller Plant Cooling Tower Water Flow: 3,100 GPM (Future: 6,200 GPM)
- Chiller Plant Capacity: 1,250 Tons (Future: 2,500 Tons)
- Fluid: Water
- NPSH Available: 19.7 PSIG
- System Design Pressure: 125 PSIG

Mechanical - Chiller, pumps, pipe, plate & frame heat exchanger, chilled water system make-up water, chemical shot feeder, chilled water side stream filtration, strainers, valves, adjacent cooling tower & structure

Electrical - Drives, motors, panel boards

Controls - Full central plant controller w/HMI, VFDs, heat tracing system, chiller and tower sequencing by Systecon

BAS Interface - Protocol: BACnet Type: Ethernet/IP
Testing - Pump flow testing of the chilled water pumping system (individual variable speed) and cooling tower water pumping system (individual constant speed) performed by Systecon, witnessed at the factory, with certified Wire-to-Water Efficiency report provided.

In addition to design and assembly, Systecon also supervised the rigging, reassembly, start-up and commissioning of the chiller plant, providing a level of consistency throughout the entire process. (Chiller performance and pressure tests and start-up performed by chiller manufacturer.)

Chilled, Heating and Domestic Hot Water Plant

Chilled Water System Data
- Total Flow: 2,000 GPM (Future: 3,000 GPM)
- Total Capacity: 1,000 Tons (Future: 1,500 Tons)
- Fluid: Water
- Suction Pressure: 125 PSIG
- Working Pressure: 125 PSIG
- Maximum Pressure: 150 PSIG

Condenser Water System Data
- Total Flow: 3,000 GPM (Future: 4,500 GPM)
- Fluid: Water
- Suction Pressure: 125 PSIG
- Working Pressure: 125 PSIG
- Maximum Pressure: 150 PSIG

Mechanical - Chillers, pumps, pipe, plate & frame heat exchanger, air separator, expansion tank, strainers, valves, adjacent cooling tower & structure, make-up water, water softener, thermostatic mixing valve, emergency eyewash station, chemical shot feeder, chemical treatment system, flash tank

Electrical - Drives, motors, panel boards

Controls - Full central plant controller w/HMI, VFDs, refrigerant monitoring system, chiller and tower sequencing by Systecon

BAS Interface - Protocol: BACnet Type: Ethernet

Chiller Interface - Protocol: BACnet Type: MSTP

Testing - Factory hydrostatic test of piping. Non-witnessed flow test - CHW, CDW, HHW pump sets pressure measured at 25, 50, 75, and 100% - and chiller plant functional test at the factory.

Heating Water System Data
- Total Flow: 490 GPM
- Fluid: Water
- Suction Pressure: 125 PSIG
- Working Pressure: 125 PSIG
- Maximum Pressure: 150 PSIG

Domestic Hot Water System Data
- Total Flow: 45 GPM
- Fluid: Water
- Suction Pressure: 125 PSIG
- Working Pressure: 125 PSIG
- Maximum Pressure: 150 PSIG

Desert Springs Hospital Medical Center
Las Vegas, NV
Outdoor application with enclosure